Visualizing Intrinsic 3D‐Strain Distribution in Gold Coated ZnO Microstructures by Bragg Coherent X‐Ray Diffraction Imaging and Transmission Electron Microscopy with Respect to Piezotronic Applications

نویسندگان

چکیده

Novel devices ranging from bio magnetic field sensors to energy harvesting nano machines utilize the piezotronic effect. For optimal function, understanding interaction of electrical and strain phenomena within semiconductor crystal is necessary. Here, studies a model system are presented, consisting ZnO microrod coated by thin layer gold, which forms Schottky contact with piezoelectric material. Coherent X-ray diffraction imaging (CXDI) transmission electron microscopy (TEM) used visualize structure distribution, showing that exhibits strains multiple origins in bulk at interface. Strain values −6 × 10-4 have been measured CXDI ZnO/Au The origin shown be combination an interface strain, possibly caused formation, distinct, localized fields inside assigned depletion screening bent rod. These findings will contribute sensor development better applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial Distribution Function Imaging by Diffraction Scanning Electron Microscopy

1. Institut für Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany 2. Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm, Germany 3. Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany 4. Herbert Gleiter Institut...

متن کامل

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

Electron Diffraction Using Transmission Electron Microscopy

Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈1...

متن کامل

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal1

A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and project...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced electronic materials

سال: 2021

ISSN: ['2199-160X']

DOI: https://doi.org/10.1002/aelm.202100546